Ch6&8 Counting

本篇笔记涵盖了计数原理的基本概念,包括加法原理、乘法原理、容斥原理和树形图等。接着介绍了鸽笼原理及其广义形式,排列组合的定义和计算方法,以及如何处理重复元素的排列和组合。还探讨了将对象分配到盒子中的不同情况,组合恒等式的应用,以及递推关系的定义和解法。最后,生成函数的概念及其在计数问题和递推关系中的应用也得到了阐述。(由 gpt-4o-mini 生成摘要)

1. 计数原理 Counting Principles

1.1. 加法原理 The Sum Rule

加法原理(the sum rule):If SS and TT are 不相交的(disjoint) finite sets, then

ST=S+T|S\cup T| = |S| +|T|

1.2. 乘法原理 The Product Rule

乘法原理(the product rule):If SS and TT are finite sets, then

S×T=S×T|S \times T| = |S| \times |T|

Here S×TS \times T denotes the Cartesian product of sets SS and TT.

1.3. 容斥原理 The Inclusion-Exclusion principle

容斥原理(the inclusion-exclusion principle = subtraction rule):If SS and TT are finite sets, then

ST=S+TST|S\cup T| = |S| + |T| - |S\cap T|

1.4. 树形图 Tree Diagrams

一种用树形图(tree diagram) 来计数的思想:To use trees in counting, we use a branch to represent each possible choice. We represent the possible outcomes by the leaves.

Chapter 6.1 - Example 9

How many bit strings of length four do not have two consecutive 1s?

Solution

There are 88 bit strings of length four without two consecutive 1s.

2. 鸽笼原理 The Pigeonhole Principle

鸽笼原理(the pigeonhole principle)

If kk is a positive integer and k+1k+1 or more objects are placed into kk boxes, then there is at least one box containing two or more of the objects.

广义鸽笼原理(the generalized pigeonhole principle)

If nn objects are placed into kk boxes, then there is at least one box containing at least n/k\lceil n/k \rceil objects.

Chapter 6.2 - Example 6

Every sequence of n2+1n^2+1 distinct integers contains a subsequence of length n+1n + 1 that is either strictly increasing or strictly decreasing.

Solution by myself

Dilworth 定理指出,对于任意有限偏序集,其最长反链长度必等于最小链划分中链的数目。故命题“最长上升子序列的长度为 nn” 的对偶命题为“非升子序列的最小划分数为 nn”。

对于原数列,若其最长上升子序列的大于等于 n+1n+1,则问题解决;否则存在一组 nn 个下降子序列的划分。根据鸽笼原理,其中至少有一个的长度大于 nn,即可找到一个长度大于等于 n+1n+1 的下降子序列。

Solution by teacher

反证法:用 (xi,yi)(x_i,y_i) 表示第 ii 个位置开始的最长上升子序列长度和最长下降子序列长度,根据鸽笼原理,必存在 i,ji,j 满足 (xi,yi)=(xj,yj)(x_i,y_i) = (x_j,y_j),而 aiaja_i \neq a_j,故矛盾。

3. 排列组合 Permutations and Combinations

3.1. Introduction

Definition: Permutation

A 排列(permutation) of a set of distinct objects is an ordered arrangement of these objects.

An r-permutation is an ordered arrangement of rr elements of a set, denoted by P(n,r)P(n,r).

P(n,r)=n×(n1)××(nr+1)P(n,r) = {n\times (n-1)\times \cdots \times (n-r+1)}

Definition: Combination

A r-组合(combination) of elements of a set is an unordered selection of rr elements from the set, denoted by C(n,r)=(nr)C(n,r) = \displaystyle\binom n r.

C(n,r)=P(n,r)P(r,r)=n×(n1)××(nr+1)r×(r1)××1C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n\times (n-1)\times \cdots \times (n-r+1)}{r\times (r-1)\times \cdots \times 1}

3.2. Permutation and Combination with Repetition

rr-permutation with repetition:The number of rr-permutations of a set of nn objects with repetition allowed is

nrn^r

nn-permutation with limited repetition:The number of different permutations of nn objects, where there are n1n_1 indistinguishable objects of type1, …, and nkn_k indistinguishable objects of type kk, is

n!n1!n2!nk!\frac{n!}{n_1!n_2!\cdots n_k!}

rr-circle permutation:The number of rr-circle permutations of a set of nn objects is

P(n,r)r\frac{P(n,r)}{r}

rr-combination with repetition:The number of rr-combination from a set with nn elements when repetition of elements is allowed is

(n+r1r)\binom{n+r-1}{r}

这个就是隔板法大家懂的都懂。

3.3. Distributing Objects into Boxes

Distinguishable objects and distinguishable boxes:The number of ways to distribute nn distinguishable objects into kk distinguishable boxes so that nin_i objects are place into box ii, i=1,2,,ki=1,2,\cdots,k, equals

n!n1!n2!nk!\frac{n!}{n_1! n_2! \cdots n_k!}

Distinguishable objects and indistinguishable boxes:The number of ways to distribute nn distinguishable objects into kk indistinguishable boxes is

j=1kS(n,j)=j=1k(i=0j1(ij)(1)i(ji)nj!)\sum_{j=1}^k S(n,j) = \sum_{j=1}^k \left( \sum_{i=0}^{j-1} \binom{i}{j} \frac{(-1)^i (j-i)^n}{j!} \right)

4,3,3,2,2 (n,4,3,3,2,2)/2/2

需要引入第二类斯特林数。但一般来说,不搞斯特林数那一套,手动枚举一下可能的隔板情况,并利用组合数进行统计的做法更为高效。

Indistinguishable objects and distinguishable boxes:The number of ways to distribute nn indistinguishable objects into kk distinguishable boxes is

(n1k1)\binom{n-1}{k-1}

还是使用隔板法。

Indistinguishable objects and indistinguishable boxes:The number of ways to distribute nn indistinguishable objects into kk indistinguishable boxes is

3.4. 组合恒等式 Combinatorial Indentities

Theorem 1: 二项式定理(the binomial theorem)

Let xx and yy be variables, and let nn be a nonegative integer. Then

(x+y)n=j=0n(nj)xnjyj(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j

可以得到以下推论:

k=0n(nk)=2n\sum_{k=0}^n \binom{n}{k} = 2^n
k=0n(1)k(nk)=0\sum_{k=0}^n (-1)^k \binom {n}{k} = 0

Theorem 2: 帕斯卡恒等式(PASCAL's identity)

Let nn and kk be positive integers with knk\le n. Then

(n+1k)=(nk1)+(nk)\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}

Theorem 3: 范德蒙德恒等式(Vandermonde's indentity)

Let m,nm,n and rr be nonnegative integer with rr not exceeding either mm or nn. Then

(m+nr)=k=0r(mrk)(nk)\binom{m+n}{r} = \sum_{k=0}^r \binom{m}{r-k}\binom{n}{k}

可以得到以下推论:

(2nn)=k=0n(nk)2\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2

Theorem 4

Let nn and rr be nonnegative integer with rnr \le n. Then

(n+1r+1)=j=rn(jr)\binom{n+1}{r+1} = \sum_{j=r}^n\binom{j}{r}

4. 组合证明 Combinatorial Proofs

A 数两次的证明方法(double counting proof) uses counting arguments to prove that both sides of an identity count the same objects, but in different ways.

A 基于双射的证明方法(bijective proof) shows that there is a bijection between the sets of objects counted by the two sides of the identity.

利用组合方法证明:C(n,r)=C(n,nr)C(n,r)=C(n,n-r)

5. 递推关系 Recurrence Relations

5.1. 递推关系 Recurrence Relations

Definition: Recurrence Relations

A 递推关系(recurrence relation) for the sequence {an}\{a_n\} is an equation that expresses ana_n in terms of one or more orf the previous terms of the sequence, namely, a0,a1,,an1a_0,a_1,\ldots,a_{n-1} or all integers nn with nn0n\ge n_0, where n0n_0 is a nonnegative integer.

an=f(a0,a1,a2,,an1),nn0a_n= f(a_0,a_1,a_2,\ldots,a_{n-1}),\quad n\ge n_0

满足同一组递推关系的数列可能有很多,我们用初始条件(initial conditon) 区分他们。

5.2. 线性递推 Linear Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation of Degree kk with Constant Coefficients

It refers to a recurrence relation in the form

an=c1an1+c2an2++ckanka_n=c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}

where c1,c2,,ckc_1,c_2,\ldots,c_k are real numbers, and ck0c_k\neq 0.

  • 线性(linear):linear combination of previous terms
  • 常系数(constant coefficient):the coefficients of aia_is are constants
  • 阶(degree) kkana_n 可以看做一个之和 kk 项有关的函数。 ana_n is a function of the previous kk terms of the sequence
  • 齐次(homogeneous):等式右边没有非零的常数项。If we put all the aia_is on the left side of the equation and everything else on the right side, then the right side is 00. Otherwise 非齐次(nonhomogeneous)

Some Examples

我们可以从常系数 kk 阶线性齐次递推的递推式中得到他的特征方程(characteristic equation)

rkc1rk1c2rk2ck=0r^k - c_1 r^{k-1} - c_2 r^{k-2} - \cdots - c_k = 0

特征根(characteristic root)

r1,r2,,rkr_1,r_2,\ldots,r_k

5.2.1. 解常系数线性齐次递推 Solve Linear Homogeneous Recurrence Relation With Constant Coefficients

Theorem

c1,c2,,ckc_1,c_2,\cdots,c_k 为实系数。假设递推关系的特征方程 rkc1rk1ck=0r^k-c_1 r^{k-1} - \cdots - c_k=0tt 个不同的特征根 r1,r2,,rtr_1,r_2,\cdots,r_t 且重复次数分别为 m1,m2,,mtm_1,m_2,\cdots,m_t。那么常系数线性齐次递推数列 {an}\{a_n\} 的一个通解(general solution)

an=(α1,0+α1,1n++α1,m11nm11)r1n+(α2,0+α2,1n++α2,m21nm21)r2n++(αt,0+αt,1n++αt,mt1nmt1)rtn\begin{aligned} a_n = & \,(\alpha_{1,0} +\alpha_{1,1} n+\cdots+\alpha_{1,m_1-1} n^{m_1-1}) r_1^n\\ + & \,(\alpha_{2,0} + \alpha_{2,1} n + \cdots + \alpha_{2,m_2-1} n^{m_2-1}) r_2^n \\ + &\, \cdots\\ + & \,(\alpha_{t,0} + \alpha_{t,1} n + \cdots +\alpha_{t,m_t-1} n^{m_t-1}) r_t^n \end{aligned}

这里通解的系数 αi,j(1it,1jmi)\alpha_{i, j} \,(1\le i\le t,\,1\le j\le m_i) 一般采用插值(或者说解线性方程组)的方式求得。

5.2.2. 解常系数线性非齐次递推 Solve Linear Nonhomogeneous Recurrence Relation With Constant Coefficients

这一节中我们解决的是形如这样的递推关系(这里 ci(1ik)c_i\,(1\le i\le k) 是常实数,F(n)F(n) 是一个非恒为零且只与 nn 有关的函数):

an=c1an1+c2an2++ckank+F(n)a_n = c_1 a_{n-1} +c_2 a_{n-2} +\cdots + c_k a_{n-k} +F(n)

Theorem 1

{an(p)}\{a_n^{(p)}\} 是常系数线性非齐次递推 an=c1an1+c2an2+ckank+F(n)a_n=c_1 a_{n-1} +c_2 a_{n-2}+\cdots c_k a_{n-k}+ F(n) 的一个特解(particular solution),那么他的通解可以被表示为 {an(p)+an(h)}\{a_n^{(p)}+a_n^{(h)}\},这里 {an(h)}\{a_n^{(h)}\} 是常系数线性齐次递推 an=c1an1+c2an2++ckanka_n=c_1 a_{n-1} +c_2 a_{n-2} +\cdots + c_k a_{n-k} 的一个通解。

Proof

Theorem 2 ★

假设常系数线性非齐次递推的非齐次部分可以表示为

F(n)=(btnt+bt1nt1++b1n+b0)snF(n)=(b_t n^t + b_{t-1} n^{t-1} + \cdots + b_1 n + b_0) s^n

那么该非齐次递推的特解遵循以下形式

nm(ptnt+pt1nt1++p1n+p0)snn^m (p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n

这里 mm 表示 ss 作为特征方程的解的重数,如果 ss 不是特征根则 m=0m=0

一般来说要解的 F(n)F(n) 都符合 Theorem 2 的形式,这种情况下先把特解的形式代入递推式,即可求特一组特解 {an(p)}\{a_n^{(p)}\}。随后若给了原数列的初始条件,则将其减去 {an(p)}\{a_n^{(p)}\} 中的对应项,从而解得 {an(h)}\{a_n^{(h)}\}

6. 生成函数 Generating Functions

Some Mathematical Terms

  • xxkk 次方(xx to the power of kk)xkx^k
  • 分式分解(partial fraction decomposition)
  • 一阶导数(the first derivative)二阶导数(the second derivvative):“f(x)f(x) 的一阶导”用英语说是“the first derivative of f(x)f(x)”。
  • 卷积(convolution)

Definition: (Original) Generating Function

The 生成函数(generating function) for the sequence a0,a1,a2,ak,a_0,a_1,a_2,\ldots a_k,\ldots of read numbers is the infinite series

G(x)=a0+a1x+a2x2++akxk+=k=0akxkG(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k + \cdots = \sum_{k=0}^{\infty} a_k x^k

  • 在使用生成函数时,我们不关心其定义域,也不关心其的敛散性。
  • 本课程中,我们不学习指数生成函数,狄利克雷生成函数等其他类型的生成函数,故直接用“生成函数”一词默认指代 OGF。

Theorem 1

Let f(x)=k=0akxkf(x) = \sum\limits_{k=0}^{\infty} a_k x^kg(x)=k=0bkxkg(x) = \sum\limits_{k=0}^{\infty} b_k x^k. Then

  • f(x)+g(x)=k=0(ak+bk)xkf(x) + g(x) = \sum\limits_{k=0}^\infty (a_k + b_k) x^k
  • αf(x)=k=0αakxk\alpha \cdot f(x) = \sum\limits_{k=0}^\infty \alpha \cdot a_k x^k
  • xf(x)=k=0kakxkx \cdot f'(x) = \sum\limits_{k=0}^\infty k \cdot a_k x^k
  • f(αx)=k=0akαkxkf(\alpha x) = \sum\limits_{k=0}^\infty a_k \alpha^k x^k
  • f(x)g(x)=k=0i=0akbixk+if(x)g(x) = \sum\limits_{k=0}^\infty \sum\limits_{i=0}^\infty a_k b_i x^{k+i}

6.1. 广义二项式定理 The Extended Binomial Theorem

Definition: 广义二项式(extended binomial coefficient)

Let uu be a real number and kk a nonnegative integer. Then the extended binomial coefficient is defined by

(uk)={u(u1)(uk+1)/k!if k>01if k=0\binom{u}{k} = \begin{cases} u(u-1)\cdots (u-k+1)/k! \quad &\text{if } k>0\\ 1\quad&\text{if }k=0 \end{cases}

Theorem: 广义二项式定理(the extended binomial theorem)

Let xx be a real number with x<1|x|<1 and let uu be a real number. Then

(1+x)u=k=0(uk)xk(1+x)^u = \sum_{k=0}^\infty \binom{u}{k} x^k

6.2. Some Common Used Generating Functions

Sequence Generating Function
C(n,k)C(n,k) (1+x)n(1+x)^n
C(n,k)akC(n,k) a^k (1+ax)n(1+ax)^n
[k<n][k<n] 1+x+x2++xn1=1xn1x1+x+x^2+\cdots+x^{n-1}=\dfrac{1-x^n}{1-x}
11 11x\dfrac{1}{1-x}
aka^k 11ax\dfrac{1}{1-ax}
k+1k+1 1(1x)2\dfrac{1}{(1-x)^2}
C(n+k1,k)C(n+k-1,k) (1x)n(1-x)^{-n}
(1)kC(n+k1,k)(-1)^k C(n+k-1,k) (1+x)n(1+x)^{-n}
C(n+k1,k)akC(n+k-1,k) a^k (1ax)n(1-ax)^{-n}
1k!\dfrac{1}{k!} exe^x
(1)k+1k\dfrac{(-1)^{k+1}}{k} ln(1+x)\ln (1+x)

6.3. 生成函数的应用 Applications of Generating Function

Example: Solve Counting Problems with Generating Function

Suppose that there are 2r2r red balls, 2r2r blue balls, and 2r2r white balls. How many ways to select 3r3r balls from these balls?

Combinational Solution

容斥原理+隔板法。先不加限制任取,然后减掉某种颜色选超过 2r2r 个的情况,按理来说还要加上有两个选超但是这已经超过 3r3r 了故不需要考虑。所以答案是:

(3r+3131)3(3r(r1)+3131)\binom{3r+3-1}{3-1} - 3 \binom{3r-(r-1)+3-1}{3-1}

Solution by Generating Function

[x3r](1x2r+11x)3=(3r+22)3(r+12)[x^{3r}] \left( \frac{1-x^{2r+1}}{1-x} \right)^3 = \binom{3r+2}{2}- 3\binom{r+1}{2}

Example: Solve Recurrence Relations with Generating Function

Use generating functions to solve the recurrence relation an=2an1+3an2+4n+6a_n=2a_{n-1} + 3 a_{n-2} + 4^n + 6 with initial conditions a0=20,a1=60a_0=20,\,a_1=60.

Solution

ydMpu3C0.png

sgMGeqvD.png

7. 容斥原理 The Principle of Inclusion-Exclusion

Theorem: The Principle of Inclusion-Exclusion

and an alternative form:

7.1. Examples

7.1.1. 埃氏筛 The Sieve of Eratoshenes

Example: The sieve of Eratoshenes

Example: Derangement

Count the permutations for n objects that leave no objects in their original positions.

Theorem

The number of derangements of a set with nn elements is

Dn=n!(111!+12!13!++(1)n1n!)D_n=n! \left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n \frac{1}{n!} \right)

评论

TABLE OF CONTENTS

1. 计数原理 Counting Principles
1.1. 加法原理 The Sum Rule
1.2. 乘法原理 The Product Rule
1.3. 容斥原理 The Inclusion-Exclusion principle
1.4. 树形图 Tree Diagrams
2. 鸽笼原理 The Pigeonhole Principle
3. 排列组合 Permutations and Combinations
3.1. Introduction
3.2. Permutation and Combination with Repetition
3.3. Distributing Objects into Boxes
3.4. 组合恒等式 Combinatorial Indentities
4. 组合证明 Combinatorial Proofs
5. 递推关系 Recurrence Relations
5.1. 递推关系 Recurrence Relations
5.2. 线性递推 Linear Recurrence Relations
6. 生成函数 Generating Functions
6.1. 广义二项式定理 The Extended Binomial Theorem
6.2. Some Common Used Generating Functions
6.3. 生成函数的应用 Applications of Generating Function
7. 容斥原理 The Principle of Inclusion-Exclusion
7.1. Examples